((5x-10)/(x^2-4x+4))+((1)/(x-2))

Simple and best practice solution for ((5x-10)/(x^2-4x+4))+((1)/(x-2)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((5x-10)/(x^2-4x+4))+((1)/(x-2)) equation:


D( x )

x-2 = 0

x^2-(4*x)+4 = 0

x-2 = 0

x-2 = 0

x-2 = 0 // + 2

x = 2

x^2-(4*x)+4 = 0

x^2-(4*x)+4 = 0

x^2-4*x+4 = 0

x^2-4*x+4 = 0

DELTA = (-4)^2-(1*4*4)

DELTA = 0

x = 4/(1*2)

x = 2 or x = 2

x in (-oo:2) U (2:+oo)

(5*x-10)/(x^2-(4*x)+4)+1/(x-2) = 0

(5*x-10)/(x^2-4*x+4)+1/(x-2) = 0

x^2-4*x+4 = 0

x^2-4*x+4 = 0

x^2-4*x+4 = 0

DELTA = (-4)^2-(1*4*4)

DELTA = 0

x = 4/(1*2)

x = 2 or x = 2

(x-2)^2 = 0

(5*x-10)/((x-2)^2)+1/(x-2) = 0

(5*x-10)/((x-2)^2)+(1*(x-2))/((x-2)^2) = 0

1*(x-2)+5*x-10 = 0

6*x-12 = 0

(6*x-12)/((x-2)^2) = 0

(6*x-12)/((x-2)^2) = 0 // * (x-2)^2

6*x-12 = 0

6*x-12 = 0 // + 12

6*x = 12 // : 6

x = 12/6

x = 2

x in { 2}

x belongs to the empty set

See similar equations:

| 9(x+1)+8(x+1)=5x-5 | | X^2-11xy+15y^2=0 | | 9x-1=4x+9x+2 | | 2x^4+5x^3-5x-2=0 | | 4m-5=2m+15 | | 152-(-15)+(166)-16= | | 3k-7=80 | | 67=9 | | 13+r=12 | | 23.5=y | | 4x(x+6)=6x(4x+4) | | -4+7a=9a-8 | | 6(-8-3)=-30 | | m=-0.3n+27 | | m=-0.3+27 | | 2-x*5=30 | | 6(-2-3)=-30 | | 3+(x/4)=24 | | 29-4x=25+4x | | 8-(3/8k)=-4 | | 5y+4=6y-3 | | 6-(b/3)=-2 | | -32-(3/5f)=-17 | | 3+(d/-4)=15 | | 0.5-(x/7)=2.5 | | 6+(u/5)=2 | | (3x-i)(2+i)+(x-iy)(1+2i)=5+6i | | 14x-x^2=0 | | t(t-96)=-1980 | | 7+3*x=16 | | 6x^3+48x^2+96x=0 | | X-2/3=30 |

Equations solver categories